In physics, a time machine is known as a closed timelike curve (CTC). Basically, an object makes a loop through spacetime to interact with its past self. In a recent work published in Nature, a team simulated the possible effect of a time machine using polarized light. Since they couldn’t actually make a beam of light travel back in time, they used two separate beams of light, with one beam mirroring an earlier state of the other. Their focus was to study how quantum computers might be affected by a CTC.
Quantum computers use the fuzzy aspects of quantum mechanics to perform calculations. Rather than discrete bits of 0s and 1s, a quantum computer uses quantum states or q-bits. The challenges of quantum computing are huge, but they have the potential to perform some incredibly difficult computations with relative ease. In the early 1990s, David Deutsch demonstrated that if a CTC is self-consistent on a quantum level, then quantum computers could solve computational problems known as PSPACE-complete. In other words, it would be the supercomputer of all supercomputers.
From Professor Brian Koberlein, astrophysicist and physics professor at Rochester Institute of Technology.
More >>